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Institut für Theoretische Chemie, Universita¨t Tübingen, Auf der Morgenstelle 8, D-72076 Tu¨bingen, Germany

Tsongjy Huang† and D. L. Stein‡

Department of Physics, University of Arizona, Tucson, Arizona 85721
~Received 13 November 1995; revised manuscript received 25 January 1996!

Random walks onstate space partitionsprovide an abstract generic picture for the description of macro-
scopic fluctuations in heterogeneous systems such as proteins. We determine the average residence probability
and the average distribution of residence times in a particular macroscopic state for the ensemble ofrandom
partitionsof a one-dimensional state space. In particular, the probability that a walker remains in an open-state
cluster decays in a manner that is slower than exponential but faster than a power law.
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I. INTRODUCTION

At physiological temperatures, proteins fluctuate strongly
between different microscopic conformations@1–4#. On a
macroscopic level, these microscopic fluctuations can mani-
fest themselves as fluctuations between protein states of dif-
ferent functionality. One simple, well-known example is a
protein acting as a passive ion channel that can be in either
an open or a closed state@5,6#. Other examples are fluctua-
tions of transport proteins between states of different binding
activity for the ligand@7,8# or fluctuations of catalytic pro-
teins between states of different catalytic effectivity. We will
advocate here a generic, albeit abstract, view for the descrip-
tion of these macroscopic manifestations of microscopic con-
formational fluctuations.

Proteins are instances of systems with a high-dimensional
state space@9#. This space of microscopic conformations can
be partitioned into sets corresponding to the different macro-
scopic protein states. Usually, several microscopic confor-
mations that are close to each other in state space will belong
to the same macroscopic state and will form a more or less
extended individual patch. All patches that belong to one
particular macroscopic state then make up one partition set;
see Fig. 1. There are several relevant topologies for the re-
spective structures of the partition regions in that high-
dimensional state space: one or several of them may perco-
late throughout the entire state space, but not the others, or
all of them may percolate. Note that, due to the high dimen-
sionality of the state space, independent percolation of dif-
ferent partitions is possible. However, having none percolate
requires special geometries and is unlikely to be encountered
@10#.

Thermal fluctuations can, in general, be modeled success-
fully as a random walk in some state space@11–13#. Confor-
mational fluctuations of proteins, particularly at physiologi-
cal temperatures, are no exception to that. Fluctuations of the

macroscopic state of a protein arise in this picture from the
random walk leaving a patch corresponding to one mac-
rostate and entering the patch of another macrostate. During
the time the random walk stays in that patch the protein stays
in that macrostate until it leaves the patch again either to
enter the one it came from or to enter another; see Fig. 1. We
will call this approach the random walk on state space par-
tition ~RWSSP! picture of macroscopic fluctuations.

Due to the complicated interactions involved in a strongly
heterogeneous system such as a protein, the random walk in
protein state space has to be viewed as one on a very rugged
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FIG. 1. Sketch of state space partitioning in~a! two dimensions
and ~b! one dimension.
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potential surface@14#. Particularly in the low-temperature re-
gime, this ruggedness imposes strong limitations on the parts
of state space that are accessible at all, a feature known as
‘‘broken ergodicity’’ @15,16#. Although there has been con-
siderable work on stochastic processes on rugged potentials,
the properties of macroscopic fluctuations due to rugged po-
tential random walks on partitions are completely unknown
up to now. Nevertheless, they could possibly give interesting
insights into the low-temperature behavior of glasses and of
proteins.

Here, however, we will be concerned with the high-
temperature regime. In this regime, random walks on rugged
potentials can be viewed on macroscopic length scales as
free diffusion with some suitably renormalized diffusion co-
efficient @17–19#. It is also known that, e.g., Mo¨ssbauer data
on protein fluctuations can be described successfully using
an effective temperature-dependent diffusion coefficient in a
smooth, slowly varying potential@20–22#. We will therefore
assume in the following that the random walk in the protein
conformational state space can be described in a first ap-
proximation as free diffusion.

The open-state–closed-state fluctuations of passive ion
channel proteins are a very suitable candidate for illustrating
the scheme that we sketched above. In this case there is a
simple, natural partitioning of state space, namely, the open
and closed states. In our approach, a channel that switches
from the open to the closed state can be thought of as cross-
ing the boundary from a region of open-state configurations
to a region of closed-state configurations. On the other hand,
there already exists a vast array of experimental literature on
the fluctuation properties of these channel proteins; see, e.g.,
Ref. @23# and references therein. Since single-channel fluc-
tuations can be monitored individually using the patch clamp
technique@24#, residence times in the open-state and closed-
state partitions are readily accessible for a statistical analysis.
In particular, the distribution of residence times in the closed
state, usually called the closing time distributionPclosed(t), is
often observed to exhibit an algebraic regime with at23/2

power law in many ion channel proteins@25–28#.
We have discussed some preliminary results of an analy-

sis of this model in other papers@29,30#. There we treated a
particular form of state space partitioning, motivated by the
ion channel situation—a single patch corresponding to an
open state, surrounded by closed states—and we investigated
the generic behavior of the closing time distribution and its
dependence on state space dimension.

In this paper we begin a more detailed study of the
RWSSP approach. Here we will not make any specific as-
sumptions about the partitioning of state space but rather we
will treat it as random: each state is assigned to one macro-
scopic partition with a probabilityp and to the other~or
others! with a probability 12p. We will be interested in the
behavior of the distribution of residence times in that particu-
lar partition, averagedover the defined ensemble of state
space partitionings. In this way we will be able to distinguish
whether any experimentally observed dynamics depends on a
particular topology and geometry of state space partitioning
or whether it can be explained simply as a generic property
of a particularstate space volume fractionof the macro-
scopic states in question.

We will confine our attention in this paper to the one-

dimensional version of the model. We do not expect these
results to apply to observations on closing time distributions
in ion channel proteins, whose state space, as noted above, is
high dimensional. However, the work here is a prerequisite
to an understanding of the higher-dimensional behavior of
the model and its analysis is interesting in its own right. In
one dimension we can solve the model exactly in at least
three different ways, two of which we discuss here. The third
technique, not discussed below, uses generating functions
and provides no additional insights. We find that in one di-
mension our model exhibits an interesting and nontrivial
time evolution. In particular, the probability that a walker
remains in an open-state cluster decays in a manner that is
slower than exponential but faster than a power law.

II. MODEL

We consider a one-dimensional lattice with unit spacing.
Each site is present with probabilityp and absent with prob-
ability 12p. At each time step, a random walker has an
equal probability of stepping to the left or to the right. The
question we seek to answer is this: Given that an ensemble of
random walkers starts at time zero at the edge of a connected
cluster of sites, what fraction still resides within the same
cluster a timet later?

We frame the problem in this way because this quantity is
equivalent to the fraction of proteins remaining in a particu-
lar macroscopic state, given that they switched to that state at
t50. That state could be, e.g., either the open state or the
closed state of an ion channel protein. However, as noted
above, the observable usually reported in measurements of
ion channel fluctuations is the distribution ofclosing times.
What is the connection between the distribution of residence
times in a particular stateP(t) and the above defined frac-
tion? LetN(t) denote the fraction of proteins that remain in
the macroscopic state at timet, given that all switched to that
state att50. We will call it, in analogy to the terminology in
reaction-diffusion systems, thesurviving fraction. Since at
time t only those proteins that have a residence time greater
than t contribute toN(t), we have

N~ t !5E
t

`

dt8P~ t8! ~2.1!

and so the residence time distribution is given by

P~ t !52dN~ t !/dt. ~2.2!

Therefore, by computingN(t) we can deduceP(t).
We will take the origin as a vacant site to the left of a

cluster. The random walker starts at site 1 att50, thereby
satisfying our formulation of the problem. We will denote
the averages over all distributions of present and absent sites
~with probability p! by ^ &p .

III. EIGENFUNCTION EXPANSION

In our first approach we calculate exactly the time evolu-
tion of the fraction of random walkers inside a cluster of size
l and the corresponding residence time distribution by solv-
ing the eigenvalue problem of the corresponding transition
rate matrix. The quantitieŝN(t)&p and^P(t)&p are then ob-
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tained by averaging over the distribution of cluster sizespl in
the ensemble. We first formulate the problem in continuous
time. However, the problem can be solved equally well in a
discrete time formulation, which is done later in this section.
In Sec. IV we will present, as an alternative approach, a
direct counting technique to solve the discrete time problem.

Let us consider a random walker that starts at an edge of
a one-dimensional cluster of sizel and is able to escape from
that cluster at both ends. The probability distributionpl(t)
over the sites 1, . . . ,l is then the solution of the equation

ṗl~ t !5A lpl~ t !, ~3.1!

where thetransition ratematrix A l is given by

A l5t21S 22 1 0 0 ••• 0

1 22 1 0 ••• 0

0 1 22 1 ••• 0

A

0 0 0 ••• 1 22

D , ~3.2!

with t being the hopping time scale. Since the choice of the
starting edge is arbitrary, we use the initial condition

pl~0!5S 1
0
A
0
D . ~3.3!

It is a straightforward exercise to exploit the cyclic prop-
erties ofA l and determine the eigenvalueslj and eigenvec-
torse( j ) by a Fourier transform ansatz. One finds

l j522@12cos~kj !#/t524 sin2~kj /2!/t ~3.4!

and

ei~ j !5A 2

l11
sin~ ik j !, ~3.5!

with

kj5
p

l11
j , j51,...,l . ~3.6!

We note that the eigenvectors~3.5! are already normalized.
With these eigenvectors and eigenvalues the solution of Eqs.
~3.1!–~3.3! is given by

pl~ t !5(
j51

1

e~ j !e1~ j !e
l j t. ~3.7!

From this result the fraction of random walkers still in the
l cluster at timet is obtained by summing over all compo-
nents ofpl(t),

Nl~ t !5(
j51

l

(
i51

l

ei~ j !e1~ j !e
l j t5(

j51

l

aj~ l !e
l j t, ~3.8!

where the expansion coefficients are

aj~ l !5
4

l11
sin2S jp2 D cos2S jp

2~ l11! D . ~3.9!

Note that the term sin2~jp/2! is one for odd values ofj and
zero for evenj . Using Eq.~2.2!, the residence time distribu-
tion Pl(t) follows from Eq.~3.8!:

Pl~ t !52(
j51

l

aj~ l !l je
l j t. ~3.10!

In the corresponding discrete time problem, the distribu-
tion pl(t) is defined only for discrete values oft50,1, . . .
and the differential equation~3.1! is replaced by

pl~ t11!5W lpl~ t !, ~3.11!

where thetransition probabilitymatrixW l is given by

W l5S 0 1
2 0 0 ••• 0

1
2 0 1

2 0

0 1
2 0 1

2 ••• 0

A

0 0 0 ••• 1
2 0

D . ~3.12!

Eigenvalues and eigenvectors are determined analogously to
the continuous time case. Now the eigenvalues are

l j5cos~kj ! ~3.13!

and the eigenvectors are identical to Eq.~3.5!. In the discrete
time case the exponential is replaced by an appropriate
power of the respective eigenvalue, i.e., we get for the frac-
tion of random walkers still in thel cluster at timet

Nl~ t !5(
j51

l

aj~ l !l j
t , ~3.14!

with the same expansion coefficientsaj ( l ) as in the continu-
ous time case. The residence time distribution has to be de-
termined in this case by a discrete variant of Eq.~2.2!, i.e.,

Pl~ t !5Nl~ t !2Nl~ t11!5(
j51

l

aj~ l !l j
t~12l j !. ~3.15!

Finally, we have to average our above results over the
distribution ofl clusters. The relative probability of a cluster
of occupied sites of lengthl is given by~12p!2pl , where the
term ~12p!2 arises from the two unoccupied sites at each
end. Correct normalization then leads to

pl5~12p!pl21. ~3.16!

Calculating the average is again straightforward,

^N~ t !&p5(
l51

`

Nl~ t !pl , ~3.17!

with a similar form for ^P(t)&p . Finally, the solution for
^N(t)&p in the continuous time basis is
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^N~ t !&p5~12p!(
l51

`
4pl21

l11 (
j51

l

cos2F jp

2~ l11!Gsin2S jp2 D
3expF24 sin2S jp

2~ l11! D t

tG , ~3.18!

whereas in a discrete time basis it is

^N~ t !&p5~12p!(
l51

`
4pl21

l11 (
j51

l

cos2F jp

2~ l11!Gsin2S jp2 D
3costS jp

l11D . ~3.19!

A detailed numerical analysis of these results will be
given in Sec. V. In Sec. IV we will present an alternative
derivation of the discrete time results, based on a direct
counting scheme for individual random walks, that will
prove useful for higher-dimensional systems. However, be-
fore doing so we will give a discussion on how the time
scales of the discrete time and continuous time results are
related. For that purpose it is useful to analyze the surviving
fractionNl(t) for a largel cluster. Asymptotically for large
l , the sum in Eq.~3.8! can be replaced by an integral and the
fast oscillating function sin2~jp/2! can be replaced by12. This
procedure leads eventually to

N`~ t !5 lim
l→`

Nl~ t !5e22t/t@ I 0~2t/t!1I 1~2t/t!# ~3.20!

in the continuous time case, whereI 0 andI 1 are the modified
Bessel functions of order zero and one, respectively@31#.
@We note that this functional dependence appears often when
reaction-diffusion processes in semi-infinite one-dimensional
systems are considered; see, e.g., Ref.@27#; see also Ref.
@32#, for a case where a physically unrelated quantity, the
time-dependent rate coefficient at a trap in the thermody-
namic limit of a one-dimensionalN-particle diffusion prob-
lem, obeys the same basic equations as ourNl(t).# In the
discrete time case the result is

N`~ t !5
1

p E
0

p

dx@cost~x!1cost11~x!#. ~3.21!

Only the cosine term with an even exponent gives a nonzero
contribution after integration. Therefore, we get eventually

N`~ t !5

S 2b t11

2 c21D !!
S 2b t11

2 c D !! , ~3.22!

where the floor functionbxc gives the integer part ofx and
the double factorial is defined by (2m)!!52mm! and (2m
21)!!52mG(m11/2)/Ap @31#. For large values oft the
functions~3.20! and ~3.22! approach

N`~ t !→
1

Apt/t
~3.23!

and

N`~ t !→
1

Ap b t11

2 c , ~3.24!

respectively. The above results show that the choicet52 is
necessary for a comparison of the discrete and continuous
time cases and that they become equivalent, at least for large
t. However, as was to be expected from the choice of the
model, the discrete time case exhibits the feature thatNl(t) is
constant for pairs of successive time points.

IV. DIRECT COUNTING PROCEDURE

The next method employs a direct counting technique.
This method will prove to be particularly useful in examin-
ing our problem on higher-dimensional lattices. However,
we defer discussion of that problem to a future paper. Here
we will just introduce the technique and show its application.

We consider ann-step walk @corresponding ton time
steps, i.e., we will relabel̂N(t)&p to ^N(n)&p# and ask for
the probability that the walker has not been absorbed, i.e.,
has not stepped onto a missing site. The basic idea in this
approach is the observation that each time the walker steps
on a previouslyuntestedsite, there is a probabilityp that the
walker remains in the starting cluster. Any step to a previ-
ously tested site, of course, will result in the walker remain-
ing in its starting cluster with probability one. LetC(n) de-
note all possible realizations of ann-step walk, subject to the
constraint of never stepping to a negative level, and letg(k)
equal the number of sites touchedat least onceby the kth
realization of such a walk. For unbiased walks it then follows
that

^N~n!&p5~ 1
2 !n(

k51

C~n!

pg~k!. ~4.1!

However, although a good starting point for simulations,
this formula is still impractical to deal with analytically.
Rather, we classify eachn-step walk by the sitem it finally
reaches and by the largest distance from level 0 it assumes
during the walk; the latter we denote bym1 i . Clearly, each
such walk has visited exactlym1 i different sites. Let
Cm1 i(n,m) be the number of walks in that class; Eq.~4.1!
can then be rewritten as

^N~n!&p5~ 1
2 !n (

m50

n

pm (
i50

b~n2m!/2c
piCm1 i~n,m!. ~4.2!

It turns out that it is helpful to use a somewhat different
quantity, namely, the number of ways in which a walker,
starting at site 0 and never stepping onto a negative site, can
reach sitem without goingbeyondlevelm1 i . We will call
this quantityWm1 i(n,m).

It is easily seen that

Cm1 i~n,m!5Wm1 i~n,m!2Wm1 i21~n,m!. ~4.3!

Using this relation, Eq.~4.2! can be rearranged as
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^N~n!&p5~ 1
2 !n (

m50

n F (
i50

b~n2m!/2c
pm1 i~12p!Wm1 i~n,m!

1p~n1m!/211W~n1m!/2~n,m!G . ~4.4!

The advantage of using the quantitiesWm1 i(n,m) is that
they can be determined by repeated application of the reflec-
tion principle for unbiased random walks@33#. The calcula-
tion is straightforward, though tedious, and the result is

Wm1 i~n,m!5S n
n1m

2
D 2 (

k50
F S n

n1m

2
111k~m121 i !D

2S n
n1m

2
121 i1k~m121 i !D G

2(
j50

F S n
n1m

2
111 i1 j ~m121 i !D

2S n
n1m

2
1~ j11!~m121 i !D G , ~4.5!

where the upper limits of the sums overk and j are finite and
depend on the condition that the value of the lower element
of a binomial coefficient must be less than or equal to the
value of the upper element. In Appendix A we show that

S 12D
n

Wl~n,m!5
2

l12 (
j51

l11

cosnS jp

l12D sinS jp

l12D
3sinS ~m11! jp

l12 D . ~4.6!

We now prove the equivalence of Eq.~3.19! and Eqs.
~4.4! and ~4.5!. Since in ann-step walk the walker cannot
reach a level higher thanb(n1m)/2c and a sitem beyond
level n, i.e., Ci(n,m)50 for i.b(n1m)/2c andm>n, the
sums overi andm in Eq. ~4.2! can be extended to infinity,

^N~n!&p5~ 1
2 !n (

m50

`

(
i50

`

pm1 iCm1 i~n,m!. ~4.7!

Combining Eq.~4.7! with Eqs.~4.3! and ~4.4!, we have

^N~n!&p5 (
m50

`

(
l5m

`
2pl~12p!

l12 (
j51

l11

cosnS jp

l12D sinS jp

l12D
3sinS ~m11! jp

l12 D , ~4.8!

which can be rewritten as

^N~n!&p5(
l50

`
2pl~12p!

l12 (
j51

l11

(
k51

l11

cosnS jp

l12D sinS jp

l12D
3sinS k jpl12D

5(
l51

`
2pl21~12p!

l11 (
j51

l

(
k51

l

cosnS jp

l11D sinS jp

l11D
3sinS k jpl11D . ~4.9!

The series( k51
l sin[k jp/( l11)] is evaluated by rearrang-

ing the terms in the series

(
k51

l

sinS k jpl11D5FsinS jp

l11D1sinS j lpl11D G1FsinS 2 jpl11D
1sinS ~ l21! jp

l11 D G1FsinS 3 jpl11D
1sinS ~ l22! jp

l11 D G1••• , ~4.10!

which after some straightforward but tedious manipulation
yields

(
k51

l11

sinS k jpl11D5sinS jp2 D cscF jp

2~ l11!GsinF jp~ l12!

2~ l11! G .
~4.11!

Plugging the above result back into Eq.~4.9!, we finally have

^N~n!&p5~12p!(
l51

`
4pl21

l11 (
j51

l

cosnS jp

l11D cos2F jp

2~ l11!G
3sin2S jp2 D , ~4.12!

which is identical to Eq.~3.19!.

V. RESULTS

From a numerical point of view, the continuous time and
discrete time cases differ fundamentally. While for the dis-
crete time case the infinite sum eigenfunction expansion re-
sult Eq. ~3.19! can be replaced by a finite sum, using Eqs.
~4.4! and ~4.6!, this cannot be done in the continuous time
case Eq.~3.18!. In this paper we will follow traditional lines
and take the result for the continuous time case as the start-
ing point for a numerical analysis of the behavior of the
quantities of interest. Details of an effective numerical evalu-
ation of Eqs.~4.4! and ~4.6! are deferred to a future paper.
We note, however, that both approaches show excellent nu-
merical agreement over many decades.

Since, for a particular value oft and p, Nl(t) increases
monotonically asl increases, whereaspl21 decreases, it is
necessary to find a good truncation criterion for the infinite
sum. Fortunately,Nl(t) is bounded from above by
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N`~ t !5e22t/t@ I 0~2t/t!1I 1~2t/t!#; ~5.1!

see Sec. III. The Bessel functions in Eq.~5.1! can be evalu-
ated to sufficient accuracy using standard techniques@31,34#.
Utilizing N`(t) it is possible to give an approximation to
^N(t)&p that involves only the evaluation of a finite sum

^N~ t !&p,approx5~12p!(
l51

L

pl21Nl~ t !1pLN`~ t !, ~5.2!

whereL is determined from the condition

N`~ t !2NL~ t !,
e

12e
p2L^N~ t !&p,approx, ~5.3!

where 0,e!1 was assumed. This condition guarantees that
the relative error of̂N(t)&p,approx is smaller thane.

Our numerical results for̂N(t)&p in Eq. ~3.18! are shown
in Figs. 2 and 3 for a wide range of values ofp. Forp50 the
state space partition of interest contains only a single site.
Since an escape is possible to each neighboring site, this
leads to a single-exponential decay exp~22t/t!. In the other
extreme case, forp51, we have a semi-infinite stretch of
states, and̂N(t)&p51 is given byN`(t), defined in Eq.~5.1!
above. The long-time behavior ofN`(t) is then algebraic,

N`~ t !→
1

Apt/t
. ~5.4!

For intermediate values ofp it is clearly seen that̂N(t)&p
is faster than algebraic but slower than exponential. In order
to analyze the nonexponentiality of^N(t)&p in more detail,
we have replotted the data of Fig. 2 in a ln-ln vs ln plot in
Fig. 3. The advantage of such a representation is that a Kohl-
rausch or Williams-Watts behavior exp@2(t/tK)

b#, used very
often successfully as a nonexponential two-parameter fit
function, shows up as a straight line with slopeb. Figure 2
demonstrates that two to three different regimes can be dis-
tinguished. First, there is an initial exponential decay. For
most values ofp, this single-exponential decay turns even-
tually into a nonexponential decay that can be described ap-
proximately as Kohlrausch behavior withb,1, with b de-
pending onp, as demonstrated by the approximately straight
lines with slope smaller than 1 for large values of lnt. For
values ofp close to one, however, there appears an interme-
diate regime wherêN(t)&p follows closelyN`(t), until it
also turns into a Kohlrausch decay.

The initial single-exponential decay can be easily ana-
lyzed. Using the fact thatṄ1~0!522/t and Ṅl~0!521/t for
l.1, it follows immediately that

d

dtU
t50

^N~ t !&p52~22p!/t, ~5.5!

which determines the initial exponential to be exp@2(2
2p)t/t#.

There is always some arbitrariness involved when a non-
exponential decay is fitted to a particular decay function,
e.g., a Kohlrausch function. One of the main problems is the
choice of the time range that is used for the fit. Since Fig. 3
suggests that it is particularly the long-time regime that ex-
hibits a Kohlrausch behavior, a more systematic approach is
possible. In the following, we will approximate the long-time
behavior of^N(t)&p by a Kohlrausch-like function

NK~ t !5q exp@2~ t/tK!b#, ~5.6!

where the parametersb, tK , and q are determined by the
requirement that Eq.~5.6! describes correctly the low-
frequency behavior of the Laplace transform of the exact
function ^N(t)&p . This guarantees that Eq.~5.6! is the best
possible Kohlrausch-like function to describe the long-time
behavior of^N(t)&p . An advantage of the procedure we use
is that the low-frequency moments of^N(t)&p can be deter-
mined in closed form. How this is done in detail is discussed
in Appendix B.

Figure 4 demonstrates the quality of the Kohlrausch fit by
giving a comparison with the exact behavior for some values
of p. Figures 5~a!, 5~b!, and 5~c! show the dependence of the
parametersb, tK , andq, respectively, onp. It is clear that
b~0!51 for p50. For p→1, b approaches a nonzero limit
valueb~1!50.271 38. However, in this limit the contribution
of the Kohlrausch function~5.6!, measured byq, vanishes
linearly with ~12p!, while the time scaletK diverges with
~12p!21. This result is obvious since in that limit the long-
time behavior becomes the algebraic decay obtained for a
semi-infinite cluster Eq.~5.4!. Still, we can expect that the
Kohlrausch description gives a satisfactory picture of the
long-time behavior for values ofp from 0.5 up to 0.99, as
Fig. 4 demonstrates.

FIG. 2. ^N(t)& vs t for p50,0.5,0.9,0.99,0.999,1~from left to
right!.

FIG. 3. ^N(t)& vs t in a ln-ln vs ln plot for
p50,0.5,0.9,0.99,0.999,1~from left to right!.
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VI. SUMMARY AND DISCUSSION

We have analyzed the average residence probability and
the average distribution of residence times in a particular
macroscopic state for the ensemble ofrandom partitionsof a
one-dimensional state space. We find that our model exhibits

an interesting and nontrivial anomalous time evolution. In
particular, the probability that a walker remains in a particu-
lar cluster of states decays slower than an exponential but
faster than a power law. The long-time behavior can be mod-
eled satisfactorily as a stretched exponential.

Anomalous relaxation of correlation functions is a well-
known feature of glasses and other heterogeneous systems;
see Ref.@35# and references therein. Many theories that give
rise to anomalous dynamical behavior fall into one of two
classes. The first is essentially a static disorder picture. Here
the system is assumed to be confined to some small patch of
its state space, e.g., due to high barriers at low temperatures.
These frozen-in state space patches differ between different
instances of the system in a sample, which leads to an overall
averaging for the observable in question. In its simplest form
this approach leads to a distribution of relaxation times for
single-exponential decay functions, but more sophisticated
treatments also exist. The other approach can be thought of
as a dynamic disorder picture. Simple local processes inter-
act with one another, e.g., due to dense packing at low tem-
peratures, thereby leading to strongly constrained overall dy-
namics, often modeled as a random walk on a rugged
potential landscape.

In our approach the physical reason for the anomalous
dynamical behavior is different from both of the above ap-
proaches. The microscopic dynamics of the system is not
constrained; the system wanders freely through its state
space.~This is appropriate for a system at relatively high
temperatures, as described in the Introduction.! Here state
space patches arise naturally because the macroscopic ob-
servable under study has only two states. The observed
anomalous dynamical behavior then arises from the resulting
partition of the state space. It would be interesting to see
whether this framework can give also some insight into the
description of relaxation processes in other glasslike sys-
tems.
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APPENDIX A: DERIVATION OF EQ. „4.6…

In this appendix we derive Eq.~4.6!, which is the prob-
ability that ann-step walk ending at sitem never goes be-
yond levell , given that the walk starts from site 0. We first
extend the sum overj to l12 on the right-hand side of Eq.
~4.6!, which will not affect the result, since the term corre-
sponding toj5 l12 is zero. The advantage of this change
will be seen later when we do the summations. Therefore, we
demonstrate that

S 12D
n

Wl~n,m!5
2

l12 (
j51

l12

cosnS jp

l12D sinS jp

l12D
3sinS ~m11! jp

l12 D . ~A1!

Rewriting the right-hand side of Eq.~A1!, we find that

FIG. 4. Comparison of̂N(t)& ~solid line! and the Kohlrausch fit
Eq. ~5.6! ~dashed line! for p50.5,0.9,0.99~from left to right!.

FIG. 5. Kohlrausch parameters vsp for the long-time behavior
of ^N(t)&: ~a! b, ~b! tK , and~c! q vs p.
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2

l12 (
j51

l12

cosnS jp

l12D sinS jp

l12D sinS ~m11! jp

l12 D 5
2

l12 (
j51

l12 Fei @ jp/~ l12!#1e2 i @ jp/~ l12!#

2 Gn
3Fei @ jp/~ l12!#2e2 i @ jp/~ l12!#

2i GFei @~m11! jp/~ l12!#2e2 i @~m11! jp/~ l12!#

2i G
52

22n21

l12 (
j51

l12

(
k50

n S nkD ei @ jp/~ l12!#~n22k!@ei @~m12! jp/~ l12!#

1e2 i @~m12! jp/~ l12!#2ei @mjp/~ l12!#2e2 i @mjp/~ l12!#

52
22n21

l12 (
k50

n S nkD F (j51

l12

ei @~n22k1m12! jp/~ l12!#

1(
j51

l12

ei @~n22k2m22! jp/~ l12!#2(
j51

l12

ei @~n22k1m! jp#/~ l12!

2(
j51

l12

ei @~n22k2m! jp/~ l12!#G . ~A2!

Applying the formula

(
j51

l12

ei @k jp/~ l12!#5
ei @kp/~ l12!#~ei @~ l12!kp/~ l12!#21!

ei @kp/~ l12!#21
, ~A3!

Eq. ~A2! becomes

2
22n21

l12 (
k50

n S nkD Fei @~n22k1m12!p/~ l12!#~ei @~n22k1m12!~ l12!p/~ l12!#21!

ei @~n22k1m12!p/~ l12!#21

1
ei @~n22k2m22!p/~ l12!#~ei @~n22k2m22!~ l12!p/~ l12!#21!

ei @~n22k2m22!p/~ l12!#21
2
ei @~n22k1m!p/~ l12!#~ei @~n22k1m!~ l12!p/~ l12!#21!

ei @~n22k1m!p/~ l12!#21

2
ei @~n22k2m!p/~ l12!#~ei @~n22k2m!~ l12!p/~ l12!#21!

ei @~n22k2m!p/~ l12!#21 G . ~A4!

Equation~A4! is always real. Furthermore, only some of the values of thek’s lead to non-zero terms. Those terms that
contribute to the sum in Eq.~A4! correspond tok5(n1m)/2111k8( l12), (n2m)/2211k8( l12), (n1m)/21k8( l12),
and (n2m)/21k8( l12), wherek8 is any integer between2` and`. We then apply l’Hoˆspital’s rule to evaluate these terms.
As an example, we compute the first term here.

In order to make the notation more compact, letei [(n22k1m)p/( l12)]5s. Therefore, we have
ei [(n22k1m12)(l13)p/( l12)]5sl13. The first term in Eq.~A4! is now

2
22n21

l12 (
k50

n S nkD e
i @~n22k1m12!~ l13!p/~ l12!#2ei @~n22k1m12!p/~ l12!#

ei @~n22k1m12!p/~ l12!#21
52

22n21

l12 (
k50

n S nkD s
l132s

s21
. ~A5!

We apply l’Hôspital’s rule to obtain the residues for Eq.~A5! at s51, which yields

lim
s→1

sl132s

s21
5 lim

s→1

dsl13

dk
2
ds

dk

ds

dk

, ~A6!

where
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ds

dk
5

22p i

l12
s. ~A7!

When s51, we have (n22k1m12)/(l12)52k8, wherek852`, . . . ,22,21,0,1,2, . . . ,̀ . Replacingk by k8, we then
have, ats51,

2
22n21

l12 (
k85`

` S n
n1m

2
111k8~ l12!D F ~ l13!

22p i

l12
2
2p i

l12

22p i

l12

G
5222n21 (

k850

` F S n
n1m

2
111k8~ l12!D 1S n

n2m

2
211~k811!~ l12!D G . ~A8!

Doing the same to the other terms, we finally have

2

l12 (
j51

l11

cosnS jp

l12D sinS jp

l12D sinS ~m11! jp

l12 D
5S 12D

n/2H 2 (
k850

` F S n
n1m

2
111k8~ l12!D 1S n

n1m

2
111 l2m1k8~ l12!D G

1 (
k850

` F S n
n1m

2
1k8~ l12!D 1S n

n1m

2
121 l2m1k8~ l12!D G J

5S 12D
n/2H S n

n1m

2 D 2 (
k50

` F S n
n1m

2
111k~ l12!D 2S n

n1m

2
121 l2m1k~ l12!D G

2(
j50

` F S n
n1m

2
111 l2m1 j ~ l12!D 2S n

n1m

2
1~ j11!~ l12!D G J

5S 12D
n/2H m11

n1m

2
11

S n
n1m

2 D 1 (
k50

` F m1112~k11!~ l12!

n1m

2
111~k11!~ l12!

S n
n1m

2
1~k11!~ l12!D

2
2l2m1312k~ l12!

n1m

2
121 l2m1k~ l12!

S n
n1m

2
111 l2m1k~ l12!D G J

5S 12D
n

Wl~n,m!. ~A9!

With l5m1 i ,Wl(n,m) in Eq. ~A9! is indeed the same as in
Eq. ~4.5!. In fact, there are a finite number of terms in Eq.
~A9! that have nonzero values for the binomial coefficients.
In other words, the upper limit of the sum overk is finite
unless the upper elementn of those binomial coefficients is
infinite. Therefore

S 12D
n

Wl~n,m!5
2

l12 (
j51

l11

cosnS jp

l12D sinS jp

l12D
3sinS ~m11! jp

l12 D , ~A10!
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which is the desired result.

APPENDIX B: GENERALIZED MOMENT
KOHLRAUSCH FIT

The method of generalized moment expansion@36–
40,21,41# allows a systematic analysis of the long-time be-
havior of observables. In particular, it provides a possibility
to obtain the parameters of exponential and nonexponential
approximations to the observable in question in a systematic
way. In the following we will give a short review of the basic
ideas and apply them to obtain a Kohlrausch-like description
of the long-time behavior of̂N(t)&.

The Laplace transform of a dynamical observable, e.g., of
Nl(t) , Eq. ~3.14!, defined by

Ñl~v!5E
0

`

e2vtNl~ t !dt, ~B1!

can be expanded formally for small frequencies

Ñl~v!; (
n51

`

m2n~2v!n21. ~B2!

The low-frequency expansion coefficientsm2n , also called
generalized moments, are given by

m2n5
1

~n21!! E0
`

tn21N~ t !dt. ~B3!

Generalized moments can usually be represented as matrix
elements of powers of the inverse stochastic operator that
governs the time evolution of the observable. In our particu-
lar case of a random walk on a cluster of lengthl , Eq. ~B3!
can be represented alternatively using powers of the inverse
of the transition matrixA( l ),

m2n5~21!n1T@A~ l !#2ne1 , ~B4!

where1T denotes the constant row vector~1,1,1, . . . ! and
the unit vectore15~1,0,0, . . . !T arises from the initial con-
dition Eq.~3.3!. We note, in passing, that replacing2n by n
in Eq. ~B4! gives the well-known high-frequency moments
of the Mori-Zwanzig projection operator formalism@42,43#.

An analytical evaluation of Eq.~B4! is, in our case, pos-
sible, e.g., using the techniques of Refs.@21# and @39#. In
particular, one introduces the auxiliary vector

m5@A~ l !#211. ~B5!

This auxiliary vector is the solution of the equation

A~ l !m521, ~B6!

which can be solved analytically sinceA( l ) is a tridiagonal
matrix. Only the first component of that vector is of interest
sincem21 is given by

m215e1
Tm. ~B7!

A generalization of this scheme to higher-order moments is
straightforward. In particular, we obtain

m215 l /2, ~B8a!

m225 l ~ l11!~ l12!/24, ~B8b!

m235 l ~ l11!~ l12!~ l 212l12!/240. ~B8c!

For the ensemble-averaged observable^N(t)&p , however, we
still have to average Eqs.~B8! over the cluster size distribu-
tion ~see Sec. III! with the result

^m21&p5
1

2~12p!
, ~B9a!

^m22&p5
1

4~12p!3
, ~B9b!

^m23&p5
~11p!2

8~12p!5
. ~B9c!

Based on the generalized moments of a dynamical observ-
able, one can obtain approximations that exhibit the correct
long-time behavior. This is done by the requirement that the
approximations reproduce a specified number of these mo-
ments@39#. Specifically, ann-parameter approximation func-
tion of a particular functional form is required to reproduce
the momentsm21 to m2n of the exact observable. In this
sense, the approximation obtained is thebest possible ap-
proximationof that functional form.

Of particular interest in our case is a Kohlrausch-like
function

NK~ t !5qe2~ t/tK!b
, ~B10!

which reproduces the correct long-time behavior of^N(t)&p .
We require therefore that the parametersq, tK , andb are
chosen so that the moments of Eq.~B10!,

m2n5
q

~n21!!

tK
n

b
GS n

b D , n51,2,3, ~B11!

reproduce the moments of^N(t)&p @Eq. ~B9!#. This leads to
the nonlinear equation

2
^m21&p~m23!p

^m22&p
2 5

G~1/b!G~3/b!

G~2/b!2
~B12!

for the ~numerical! determination ofb. With b given, the
other parameters are obtained immediately by

tK
^m22&p
^m21&p

G~1/b!

G~2/b!
~B13a!

and

q5^m21&pF t

b
GS 1b D G21

. ~B13b!
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